An Autism-Linked Mutation Disables Phosphorylation Control of UBE3A

August 18, 2015
An Autism-Linked Mutation Disables Phosphorylation Control of UBE3A

Jason J Yi 1Janet Berrios 2Jason M Newbern 3William D Snider 4Benjamin D Philpot 4Klaus M Hahn 5Mark J Zylka 6

Abstract

Deletion of UBE3A causes the neurodevelopmental disorder Angelman syndrome (AS), while duplication or triplication of UBE3A is linked to autism. These genetic findings suggest that the ubiquitin ligase activity of UBE3A must be tightly maintained to promote normal brain development. Here, we found that protein kinase A (PKA) phosphorylates UBE3A in a region outside of the catalytic domain at residue T485 and inhibits UBE3A activity toward itself and other substrates. A de novo autism-linked missense mutation disrupts this phosphorylation site, causing enhanced UBE3A activity in vitro, enhanced substrate turnover in patient-derived cells, and excessive dendritic spine development in the brain. Our study identifies PKA as an upstream regulator of UBE3A activity and shows that an autism-linked mutation disrupts this phosphorylation control. Moreover, our findings implicate excessive UBE3A activity and the resulting synaptic dysfunction to autism pathogenesis.

Continue Reading

View PDF

fx1

Related Posts

Consistent, convergent pathways link two forms of autism

Consistent, convergent pathways link two forms of autism

Consistent, convergent pathways link two forms of autism BY ANGIE VOYLES ASKHAM  /  15 NOVEMBER 2022 / https://doi.org/10.53053/OWUW9177 The brains of people with a duplication of the 15q11-13 chromosomal region have dysregulated gene expression, particularly in...

Cannabis-based magistral formulation…

Cannabis-based magistral formulation…

Cannabis-based magistral formulation is highly effective as an adjuvant treatment in drug-resistant focal epilepsy in adult patients: an open-label prospective cohort study Cristian Eduardo Navarro  Neurological Sciences (2022) Cite this article Original Article -...