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Abstract 

Background: Understanding the development of the neuronal circuitry underlying autism spectrum disorder (ASD) 
is critical to shed light into its etiology and for the development of treatment options. Resting state EEG provides a 
window into spontaneous local and long‑range neuronal synchronization and has been investigated in many ASD 
studies, but results are inconsistent. Unbiased investigation in large and comprehensive samples focusing on replica‑
bility is needed.

Methods: We quantified resting state EEG alpha peak metrics, power spectrum (PS, 2–32 Hz) and functional con‑
nectivity (FC) in 411 children, adolescents and adults (n = 212 ASD, n = 199 neurotypicals [NT], all with IQ > 75). We 
performed analyses in source‑space using individual head models derived from the participants’ MRIs. We tested 
for differences in mean and variance between the ASD and NT groups for both PS and FC using linear mixed effects 
models accounting for age, sex, IQ and site effects. Then, we used machine learning to assess whether a multivariate 
combination of EEG features could better separate ASD and NT participants. All analyses were embedded within a 
train‑validation approach (70%–30% split).

Results: In the training dataset, we found an interaction between age and group for the reactivity to eye opening 
(p = .042 uncorrected), and a significant but weak multivariate ASD vs. NT classification performance for PS and FC 
(sensitivity 0.52–0.62, specificity 0.59–0.73). None of these findings replicated significantly in the validation dataset, 
although the effect size in the validation dataset overlapped with the prediction interval from the training dataset.

Limitations: The statistical power to detect weak effects—of the magnitude of those found in the training dataset—
in the validation dataset is small, and we cannot fully conclude on the reproducibility of the training dataset’s effects.

Conclusions: This suggests that PS and FC values in ASD and NT have a strong overlap, and that differences between 
both groups (in both mean and variance) have, at best, a small effect size. Larger studies would be needed to investi‑
gate and replicate such potential effects.
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Background
Autism spectrum disorder (ASD) is a prevalent neurode-
velopmental condition, affecting around 1 in 54 children 
[1]. It is diagnosed in the presence of alterations in social 
communication, social interaction and restricted and 
repetitive behaviors and interests [2]. ASD is heteroge-
neous with diverse clinical presentations and frequent 
comorbidities including epilepsy, attention-deficit/hyper-
activity disorder, anxiety and depression [3]. Currently, 
the pathophysiology of ASD is unclear. In particular, 
neuronal mechanisms underlying idiopathic ASD remain 
largely unknown [2]. Establishing potential differences in 
brain activity between ASD and NT and heterogeneities 
within the ASD population would be an important step 
to shed light into the etiology of the condition and facili-
tate the development of interventions.

Electrophysiological techniques such as EEG (electro-
encephalography) or MEG (magnetoencephalography) 
are suited to investigate macroscopic neuronal circuit 
function and maturation. They are noninvasive and direct 
measures of neuronal activity with a high temporal res-
olution enabling the evaluation of brain dynamics and 
brain rhythms. The value of EEG in ASD was recently 
highlighted by several investigations showing a consistent 
deviation of event-related activity in response to presen-
tation of human faces [4], i.e., the N170 latency, and sub-
sequent efforts to develop it into a qualified biomarker 
for use in ASD clinical trials [5]. Besides the event-locked 
EEG response to sensory stimuli, resting state EEG—that 
is the EEG signal in the absence of any specific task—
could provide important insights into brain circuitry 
associated with ASD. In particular, the resting state 
power spectrum (PS), quantifying local synchronization 
within brain regions, and functional connectivity (FC) 
measures, quantifying long-range interactions between 
distant brain areas, are key characteristics of the resting-
state EEG [6, 7].

Many studies have evaluated resting state EEG/MEG 
PS and FC in ASD across brain rhythms, from the delta to 
the gamma range, and some focusing on the most promi-
nent resting state rhythm: alpha. However, no clear pic-
ture has emerged yet. Various theories for PS alterations 
in ASD have been put forward, including a U-shaped pro-
file with excessive power in low and high frequencies [8], 
but many findings are in conflict to each other. For exam-
ple, for spectral power in the alpha band, there are vari-
ous reports of increase [9–11], decrease [12–14] and no 
effects [15, 16] in ASD compared to NT (neurotypicals). 
O’Reilly et  al. performed a systematic review of the FC 

ASD literature [17]. Although a meta-analysis could not 
be performed due to large variability in methodology and 
samples across the 52 reports included, the authors con-
cluded that there was a trend for a decrease of long-range 
FC in ASD—even as the frequency bands and brain/scalp 
regions of these effects were unclear, and despite several 
studies finding either no difference or even increased 
FC in ASD [18–20]. The inconsistencies of the results 
across studies could be driven by false positives, publica-
tion bias, small sample sizes, age effects, heterogeneity in 
the ASD population and co-occurring conditions such as 
intellectual disability, among other factors. These ambi-
guities highlight the need for a hypothesis-free evalua-
tion of PS and FC in a large sample of ASD, focusing on 
replicability and generalizability.

Here, we evaluated resting state EEG PS and FC in 
ASD (n = 212) and NT (n = 199) children, adolescents 
and adults (all with IQ > 75), using the baseline visit of 
the Longitudinal European Autism Project (LEAP) for a 
cross-sectional analysis [21, 22]. We focused on diagnos-
tic effects and compared ASD and NT groups. In light 
of the conflicting literature, we performed a hypothesis-
free evaluation of PS and FC without restriction on the 
frequencies, brain/scalp areas of interest, and direction-
ality. We adopted a flexible analytical approach testing 
various models and evaluated the generalizability of our 
findings. To this end, we used cluster-based permutation 
statistics, which optimally account for the dimensionality 
of the data, to control for multiple testing across source 
locations and frequencies within specific models. Impor-
tantly, we used a validation dataset to test any findings 
from the main analysis and thereby account for possible 
false positives due to testing of multiple models.

Materials and methods
Study design and EEG acquisition
The resting state EEG data analyzed here were recorded 
as part of EU-AIMS LEAP. A complete description of 
the study design and clinical characterization of the par-
ticipants can be found elsewhere [21, 22]. Briefly, par-
ticipants with ASD were recruited based on an existing 
clinical diagnosis of ASD according to DSM-IV, DSM-
IV-TR, DSM-5 or ICD-10 criteria and all participants 
were between 6 and 32  years. ASD symptomatology 
was assessed with various instruments including the 
Autism Diagnostic Observation Schedule-2 (ADOS-2) 
and the Autism Diagnostic Interview-Revised (ADI-R), 
but participants were not excluded based on ADOS-2 
and ADI-R scores. In this work, we only include autistic 
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individuals with average to high intellectual capacities 
(IQ > 75) who successfully completed the resting state 
EEG recording (211 NT and 242 ASD).

Four minutes of resting state EEG were recorded 
per participant (2  min with eyes open, 2  min with eyes 
closed). To optimize participant compliance, resting state 
was acquired in 30  s blocks, alternating eyes open (fix-
ating a physical hourglass) and eyes closed. Data were 
acquired at five sites: Central Institute of Mental Health 
(CIMH, Mannheim, Germany), King’s College London 
(KCL, United Kingdom), University Nijmegen Medi-
cal Centre (RUNMC, Netherlands), University Campus 
BioMedico (UCBM, Rome, Italy) and University Medi-
cal Centre Utrecht (UMCU, Netherlands). The following 
EEG systems were employed: Brainvision (CIMH, KCL, 
RUNMC), Biosemi (UMCU) and Micromed (UCBM), 
with sampling frequencies of 5000  Hz (KCL, RUNMC), 
2048  Hz (UMCU), 2000  Hz (CIMH) and 256–1000  Hz 
(UCBM). All sites used 10–20 layout caps, with 60–70 
electrodes.

EEG data processing
Preprocessing
EEG signals were resampled to 1000  Hz and then band 
pass filtered to [1–32] Hz with a finite impulse response 
filter of order 2000 (using 2 s of padding at each edge of 
a resting state block). Higher frequencies (in the gamma 
range) were not included in the analysis to avoid substan-
tial contamination with muscle activity [23]. Only data 
from 61 electrodes common to most contributing sites 
were retained for subsequent analyses. Preprocessing was 
performed manually and blinded to the participants diag-
nosis and clinical information, following these sequential 
steps: (a) Eliminate bad channels, (b) locate and discard 
sections with large transient artifacts resulting, e.g., from 
muscle bursts or movements, (c) perform independent 
component analysis with fastICA (http:// www. cis. hut. 
fi/ proje cts/ ica/ fasti ca/, [24]), (d) detect artefactual com-
ponents (capturing: ocular, muscular, cardiac or other 
artifacts), (e) eliminate the contribution of artefactual 
components, (f ) iterate points (b-e) if necessary, (g) inter-
polate the bad channels that were eliminated in (a), and 
(h) re-reference signals to the average across all channels 
(average reference).

Participants were excluded from subsequent analyses 
if they met any of the following criteria: (1) less than 15 
clean 2.5  s epochs in the eyes-open or the eyes-closed 
condition (11 participants), (2) less than 51 usable chan-
nels or more than 3 neighboring channels eliminated (9 
further participants), (3) number of good channels minus 
number of artefactual independent components smaller 
than 35 (threshold selected visually when inspecting the 
distribution of values, 6 further participants). Following 

these criteria, 26 recordings (18 ASD and 8 NT) were 
discarded, resulting in a sample size of 224 ASD and 203 
NT.

Summary resting state alpha measures
We inspected the alpha peak of each participant. Alpha 
is the most prominent rhythm in the resting EEG and 
could reveal if there was a shift in frequencies between 
the ASD and the NT groups (e.g., one group having 
alpha at higher frequencies than the other). Power spec-
tra were computed for each channel and condition (eyes 
open and eyes closed) with fast Fourier transform and 
2.5 s Hanning windows with 75% overlap. Alpha peaks in 
the [6, 13] Hz range were detected automatically by fit-
ting a Gaussian over a power law background to the aver-
age eyes closed power spectrum over occipital channels 
O1, O2, Oz, PO4, PO3 and POz, following [25]. A single 
alpha peak frequency was derived per participant (and 
not separate ones for eyes open and eyes closed). Auto-
matic fits were verified by visual inspection and refined 
for 11 out of 224 ASD and 10 out of 203 NT participants. 
Seven participants with no clear alpha peak were dis-
carded from subsequent analyses, yielding a total of 218 
ASD and 202 NT participants.

The following summary alpha measures were derived 
from the alpha peak: (1) alpha peak frequency fp , (2) 
alpha power, defined as the absolute power in the range 
[

fp − 2Hz, fp + 2Hz
]

 over occipital sensors (O1, O2, Oz, 
PO4, PO3, POz), (3) reactivity to eye opening, defined 
as R = 1− PEO

PEC
 , where PEO and PEC are absolute power 

values defined previously for the eyes-open and the eyes-
closed condition.

Source reconstruction
Head models with realistic geometry were built from 
individual’s T1 weighted MRIs. Details on MRI acquisi-
tion can be found in [26]. T1-weighted MRIs were seg-
mented with SPM12 [27] into gray matter, white matter, 
cerebrospinal fluid, bone, soft tissue and air. Then, these 
probabilistic images were smoothed (5  mm FWHM), 
thresholded and resliced to produce binary masks of 
2 mm × 2 mm × 2 mm resolution for three tissue types: 
brain (including gray matter, white matter and cerebro-
spinal fluid), skull and scalp. These binary masks were 
transformed to hexahedral meshes with FieldTrip [28]. 
All three considered tissue types were assumed to have 
homogeneous and isotropic conductivity: 330 mS/m 
for the brain and scalp [29], and an age-dependent skull 
conductivity of 3.958 + 62.77*exp(− 0.2404*age[years
]) mS/m, in line with the BESA (BESA, Gräfelfing, Ger-
many) recommended conductivity ratios. Of note, the 
conductivity of cerebrospinal fluid is higher than that 
of gray or white matter [30], so setting the conductivity 
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of the brain compartment as a constant and isotropic 
value is a simplification, but the 3-tissue model has led 
to similar spatial accuracy than a model including a sepa-
rate CSF tissue in a previous publication [31]. Segmenta-
tions were visually inspected, and for 9 participants head 
models could not be built (because of either no MRI or 
no clean segmentations). As a consequence, subsequent 
analyses included 212 ASD and 199 NT participants.

The forward model was derived with FieldTrip and 
SimBio [32]. 365 source locations of interest were defined 
in gray matter in MNI space, following a 3D cubic dia-
mond grid with 1.5  cm spacing. Source positions were 
transformed from MNI to each subject’s individual space 
with a nonlinear transformation obtained with SPM12. 
Electrode positions were determined by transform-
ing standard MNI positions to subject’s space with this 
same transformation and projecting to the scalp surface. 
Source time series were estimated with linearly con-
strained minimum variance beamformer, using a regu-
larization of 5% of the average trace of the covariance 
matrix, a common filter for resting state eyes open and 
eyes closed and projecting the source time series into the 
direction of maximal power [33].

Power spectrum (PS)
Power spectra were computed for each sensor, source 
and condition: Time series (source or sensor) were con-
volved with Morlet wavelets of 0.6 octave frequency reso-
lution (f/σf = 4.88) and 5 · σt window length, with 90% 
overlap between windows, for frequencies f = 21:0.15:5 
Hz (frequencies from 2 to 32 Hz in increments of 0.15 in 
the exponent value). Since beamformer reconstructions 
suffer from power bias especially for deeper sources [34], 
source space PS values were normalized with the overall 
power over the [2 32] Hz range to produce relative PS 
values. Of note, all subsequent analyses were performed 
with source space data, except for a control analysis using 
absolute power at the sensor level.

Functional connectivity (FC)
The 365 sources (see above) were grouped into 50 
regions of interests (ROIs) (25 symmetrical ROIs per 
hemisphere, obtained through k-means clustering of the 
source positions, leading to 4–13 sources per ROI). The 
representative time series for a given ROI was defined 
as the first principal component of all the source time 
series in this ROI. For each combination of ROIs and 
frequency, functional connectivity (FC) was quantified 
with orthogonalized power correlations (orthPowCorr) 
and weighted phase lag index (wPLI), which evaluate 
complementary phase and amplitude synchronization 
while discarding zero-lag synchronization which could 
be driven by volume conduction. OrthPowCorr and 

wPLI were implemented following [35] and [36], respec-
tively. In order to avoid introducing sample size-related 
bias in wPLI, resting state data were segmented into 
non-overlapping 2.5  s clean epochs, and wPLI was esti-
mated across 15 epochs. These 15 epochs were selected 
randomly from all the clean epochs from a given subject 
and condition, this process was repeated 100 times, and 
values were averaged across the 100 repetitions. Con-
trol analyses with other FC metrics are performed using 
direct power correlations (PowCorr), coherence (COH), 
imaginary coherence (iCOH) and phase locking value 
(PLV), following [6, 35, 37]. More details on the FC met-
rics can be found in Additional file 1.

Participants
The statistical analyses reported in subsequent sections 
were performed using 212 ASD and 199 NT participants, 
after discarding 42 participants because of unsuccessful 
preprocessing, lack of clear alpha peak or no available 
head model (26, 7 and 9 participants, respectively, as 
detailed in previous sections). The groups of included and 
excluded autistic participants differed significantly, at the 
uncorrected group level, on Vineland (Adaptive Behav-
iors subscale scores) and ADOS-2 (Restricted and Repet-
itive Behaviours scores), with higher symptomatology 
in the excluded group (see Additional file 1 Table S1 for 
more details). This might be expected since participants 
with higher symptom expression are less likely to be able 
to comply with instructions, and more likely to move or 
generate artifacts during the EEG and MRI acquisition 
sessions. Table  1 summarizes the main demographics 
and clinical characteristics of the included participants. 
Age and sex did not differ between groups (p = 0.71 and 
p = 0.24, respectively). Similarly, the amount of clean data 
did not differ significantly (p > 0.15) between groups for 
eyes open (ASD: mean 102  s, SD 13  s, range 55–120  s; 
NT: mean 104 s, SD 14 s, range 46–120 s) or eyes closed 
(ASD: mean 104  s, SD 13  s, range 60–125  s, NT: mean 
106 s, SD 13 s, range 58–120 s) conditions.

Statistical analysis: data‑driven exploration followed 
by validation in independent sample
We opted for a hypothesis-free statistical analysis rather 
than a targeted approach testing concrete hypotheses given 
that the ASD resting state literature is contradictory and a 
variety of effects across brain rhythms and brain regions 
have been reported. We assessed potential power spectra 
and FC alterations across frequencies and brain regions. 
Furthermore, we evaluated the generalizability of our out-
comes by evaluating the impact of several analyses choices 
such as FC metric, statistical models, or ASD definition. 
In order to do so, while maintaining high statistical flex-
ibility, we followed a train/validation approach. That is, we 
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separated the dataset into training (70% of the participants: 
147 ASD and 140 NT) and validation datasets (30% of the 
participants: 65 ASD and 59 NT). The 30%–70% split was 
performed using stratified randomization by site, age group 
(children, adolescents, adults) and diagnosis. The univari-
ate and multivariate statistics described in the following 
sections were performed using the training dataset exclu-
sively. Clear hypotheses were derived from the analyses in 
the training dataset, which were then tested in the valida-
tion dataset. To assess the consistency between results in 
the training and validation datasets, prediction intervals 
were calculated for the univariate analysis. They estimate 
the range of values that can be expected in a replication due 
to chance and were calculated following [38] for compar-
ing effect sizes. An overview of the statistical approach is 
shown in Fig. 1. Clinical and demographic characteristics 
of the participants in the training and validation datasets 
can be found in Additional file 1: Tables S2 and S3.

Univariate statistics
Each summary alpha measure, PS and FC feature was sub-
mitted to the following linear mixed effects (LME) models:

y ∼ 1+ age+ sex+ IQ+ (1|site), homoscedastic residual errors (model 1)
y ∼ 1+ age+ sex+ IQ+ group+ group : age+ group : sex+ group : IQ+ (1|site),

homoscedastic residual errors
(model 2)

y ∼ 1+ age+ sex+ iq+ group+ group : age+ group : sex+ group : IQ+ (1|site),

heteroscedastic residual errors
(model 3)

All models were fit with the nlme package in R ver-
sion 3.4.0 [39], using maximum likelihood estimation. 
Models 1 and 2 assumed homoscedastic residual errors, 
while model 3 allowed for different residual variances 
in the ASD and NT groups. Model 3 is the full model 
shown in Fig.  1. Age and IQ were mean centered and 
variance normalized before entering the statistical 
models. The statistical significance of group differences 
in mean was determined through the log-likelihood 
ratio between models 2 and 1. Log-likelihood tests 
have been reported to be “anticonservative”: They may 
output p values that are lower than the nominal p val-
ues [40]. Therefore, significant group effects were con-
firmed by using F-tests on the individual parameters 
after fitting the models with a restricted maximum 
likelihood method [39]. The statistical significance of 
group differences in variance was determined through 
the log-likelihood ratio between models 3 and 2. The 
following transformations were applied before LME in 
order to convert the feature distributions to normal-
ity: x → log (x) (absolute power), x → x4 (alpha reac-
tivity), x → a tanh (x) (orthPowCorr) and x → x0.11 

Table 1 Overview of clinical and demographic characteristics of the participants included in the statistical analyses

Child Children (age 6–11), Adol Adolescents (age 12–17), and adults are aged 18 years and above, IQ—full scale IQ, M male, F female, ADI social, ADI communication 
and ADI RRB refer to the Social, Communication and Restricted and Repetitive Behaviours total domain scores of the ADI-R (Autism Diagnostic Interview-Revised). 
ADOS Social Affect, ADOS RRB and ADOS Total refer to the Social Affect, Restricted and Repetitive Behaviours and Total calibrated severity scores in ADOS-2. VABS 
refers to the Vineland Adaptive Behavior Second Edition Adaptive Behavior Composite standard score. SRS-2 refers to the Social Responsiveness Scale-2 Total score 
(combined parent- and self-report). Medication refers to brain active medication (antidepressants, antimigraine, antipsychotics, anxiolytics, hypnotics, sedatives, 
psychostimulants, analgesics, etc.). Values from numerical variables are reported as mean ± standard deviation [min–max]. P values for the group effects are indicated 
(t test for continuous variables, Fisher’s exact test for categorical variables) along with Cohen’s d

ASD NT Group differences

n 212 199

Age (years) 16.6 ± 5.7 [6.7–30.3] 16.8 ± 6.0 [6.9–30.8] d =  − 0.04 p = 0.71

Child/Adol/Adult 53/76/83 54/69/76

IQ 104.0 ± 14.5 [75.6–148.0] 107.9 ± 13.1 [75.6–142.0] d =  − 0.28 p = 0.0045

Sex (M/F) 153/59 132/67 p = 0.24

ADI social 15.3 ± 6.9 [0–29] (n = 202)

ADI‑R communication 12.5 ± 5.6 [0–26] (n = 202)

ADI‑R RRB 4.2 ± 2.8 [0–12] (n = 202)

ADOS‑2 Social Affect CSS 5.9 ± 2.6 [1–10] (n = 209)

ADOS‑2 RRB CSS 4.6 ± 2.6 [1–10] (n = 209)

ADOS‑2 Total CSS 5.1 ± 2.7 [1–10] (n = 209)

VABS 74.4 ± 14.2 [20–121] (n = 174) 103.2 ± 11.7 [70–127] (n = 48) d =  − 2.21 p < 0.0001

SRS‑2 84.6 ± 31.2 [20–163] (n = 193) 25.0 ± 16.5 [1–94] (n = 168) d = 2.39 p < 0.0001

Medication (%) 36.9% (n = 198) 5.6% (n = 179) p < 0.0001
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(wPLI). The optimal transformations to normality 
were obtained by evaluating the Kolmogorov–Smirnov 
goodness-of-fit test for several families of transforma-
tions. For information on site and medication effects, 
refer to Additional file 1.

Cluster-based permutation tests were used to control 
for multiple comparisons for the PS and FC measures, 
following [41]. First, clusters of frequencies and elec-
trodes/sources/links with significant effects (p < 0.05, 
uncorrected) were created. For PS, two sources/elec-
trodes were considered neighbors if they were spatially 
adjacent. For FC, two links were considered neighbors 
if they had one common node and one spatially adjacent 
node. (Two ROIs are considered adjacent if they have at 
least one pair of neighboring sources.) Then, the cluster 
size was compared with the null-hypothesis distribution 
derived from the maximal cluster sizes obtained in ran-
domized datasets (2000 randomizations were performed 
by randomizing group labels exclusively). P values were 
defined as the proportion of randomizations, which 
yielded a larger cluster size than the original dataset.

Multivariate statistics
To test whether a multivariate combination of PS and FC 
features, respectively, can discriminate ASD from NT, we 

used machine learning techniques. Before subjecting the 
data to the multivariate analyses, the effects of age, sex, 
IQ and site were removed by building PS and FC datasets 
containing the residuals of the LME models y ~ 1 + age + 
sex + IQ + (1|site) trained on individual PS and FC fea-
tures. The PS dataset consists in the space x frequency PS 
values for eyes-open and eyes-closed condition (19,710 
features). The FC dataset contains FC strength across 
links, frequencies and conditions (66,150 features). Prin-
cipal component analysis was applied to the PS and FC 
datasets (matrices of EEG features x subjects), and the 
principal components explaining at least 98% of the vari-
ance were used as input for the classification algorithms 
(160, 392 and 389 components for PS, OrthPowCorr and 
wPLI, respectively; each of these principal components is 
a linear combination of EEG features).

To date, a plethora of classification approaches has 
been introduced and proven useful [42]. The perfor-
mance of the models depends greatly on the feature 
selection approach, classification algorithm and hyper-
parameter values. Here, we use three different classifi-
cation approaches that have been successfully used in 
previous neuroimaging studies and are implemented 
with scikit-learn [43]: First, we use the L2-penalized 
support vector classifier (linSVC) which is one of the 

Fig. 1 Overview of the statistical analysis approach. Univariate and multivariate statistics were performed in the training dataset, as well as control 
comparisons to evaluate the sensitivity of the results to pipeline choices. From this, concrete hypotheses are generated and tested in the validation 
dataset
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most common approaches in neuroimaging [44, 45]. 
Second, we estimate an elastic net logistic regression, 
which combines L1 and L2 regularization and could 
perform better if only a small number of features was 
sufficient for the differentiation between two groups 
[45, 46]. Third, we combine a Boruta feature selection 
(based on random forests) with a radial basis kernel 
support vector classifier, which can detect nonlinear 
patterns differentiating between two groups [47]. Clas-
sifier hyperparameters were tuned using grid search 
(sklearn.model_selection.GridSearchCV) and nested 
tenfold cross-validation. The harmonic mean of sen-
sitivity and specificity (also known as S1 score) was 
employed as the scoring metric, since it prevents algo-
rithmic convergence into a trivial single class predic-
tion in unbalanced datasets [48]. Further details on the 
classification models employed can be found in Addi-
tional file 1: Table S4. Repeated random splits [49] were 
used to evaluate the cross-validation performance of 
the classification models (15 random splits with 20% 
left-out data, using sklearn.model_selection.Stratified-
ShuffleSplit) within the training set. The significance 
of the classification performance of the classifiers was 
assessed by comparing the scoring metric in the origi-
nal PS and FC datasets with the corresponding values 

obtained when training the classifiers in datasets with 
randomized group labels (1000 randomizations).

Results
Univariate statistics
First, we studied properties of the EEG alpha peak, the 
most prominent feature of the awake human EEG. As 
expected from the literature, both the alpha peak fre-
quency and absolute power significantly changed with 
age, with increasing peak frequency and decreasing 
power (Fig.  2, p values for age coefficient: alpha peak 
frequency p = 7.0·10−11, absolute power eyes open 
p = 3.2·10−17, absolute power eyes closed p = 1.9·10−9). 
We next investigated whether the groups differed in 
mean or variance. (A higher variance in the ASD group 
could be indicative of increased variability or heterogene-
ity.) The mean reactivity to eye opening differed between 
the ASD and NT groups (log-likelihood test p = 0.042): 
There was a significant interaction between group and 
age (F-test, p = 0.048): The age-related increases in reac-
tivity were stronger in the NT than in the ASD cohort. 
We found no significant differences between ASD and 
NT for alpha peak frequency or absolute power in the 
training sample and no difference between variances for 
any measure (p > 0.12, Table 2).

Fig. 2 Alpha peak measures. For each measure, the scatter plot of the raw values as a function of age is shown in the left side and the residuals of 
the linear mixed effects model y ~ 1 + age + sex + IQ + (1|site) on the right side. All plots derived from the training dataset (147 ASD and 140 NT)
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Next, we investigated source space spectral power and 
functional connectivity. As expected from the literature, 
both PS and FC were strongly modulated by age. Cluster-
based permutations tests showed two clusters of PS mod-
ulations with age (p < 0.001, log-likelihood tests of models 
with and without age coefficients): with PS decreasing 
with age for lower frequencies (< 7.7 Hz) and increasing 
for higher frequencies (> 10.6  Hz). Note that opposite 
trends in both frequency ranges are expected given the 
use of relative power. Comparing ASD to NT, we did not 
find any significant group effects for PS or FC, neither for 
mean nor for variance (p > 0.05, correcting for multiple 
comparisons with cluster-based permutation tests within 
PS and FC, respectively; Table 2).

Multivariate statistics
We next investigated whether a multivariate combina-
tion of PS and FC features across space and frequency 
could separate ASD from NT using three machine learn-
ing approaches: linear SVC, elastic net logistic regression 
and radial basis function SVC with a nested Boruta fea-
ture selection (see Methods). Classification performance 
was overall poor (accuracy 47–57%, sensitivity 50–54%, 
and specificity 44–61%). For PS and wPLI, the classifi-
cation performance with the elastic net classifier was 
greater than expected by chance (p = 0.025 and p = 0.009, 
respectively, Table 3).

Generalizability: age, ASD definition, alternative PS and FC 
measures
Our results above depend on specific analysis choices 
including accounting for age as a covariate, criteria for 
inclusion in the ASD group and choice of specific PS 
and FC metrics. We next tested whether our results were 
robust to these specific choices. First, to account for pos-
sible nonlinear age dependencies, we built separate ASD 
vs. NT classification models for children (6–11  years), 

adolescents (12–17 years) and adults (18–32 years). Such 
models could uncover potential age-group specific ASD 
patterns (e.g., alterations only in adults, or only in chil-
dren and adults but not adolescents) without commit-
ting to a pre-specified age-dependency model. Secondly, 
we used an alternate and “narrower” ASD definition and 
restricted the ASD sample to individuals who in addition 
to the ASD clinical diagnosis also met the ASD threshold 
on the ADOS-2 and on the ADI-R, following [50]. 51.8% 
of the ASD participants met this additional criterion 
(n = 77 ASD participants in the training dataset, n = 110 
ASD participants overall, see Additional file 1: Table  S5 
for a full description of their clinical and demographic 
characteristics). Thirdly, the effect of EEG processing 
pipeline choices was assessed by evaluating absolute 
rather than relative power and alternate FC algorithms 
with different underlying assumptions on the nature of 
the coupling between regions’ activities (PowCorr, COH, 
iCOH and PLV, as described in Materials and Methods). 
The results are listed in Table 3. Of note, given the ampli-
tude bias in beamforming source reconstructions, abso-
lute power was estimated in sensor space. Classification 
performance was in general poor and in line with the 
main analysis described in the previous section, and only 
significantly better than expected by chance for the lin-
ear SVC and the elastic net model with wPLI in children 
(p = 0.02 and p = 0.013, respectively).

Testing the models in the validation dataset
Data of 30% of the participants (65 ASD and 59 NT) were 
hold out from the previous analyses, in order to enable 
validation of the effects identified in the training dataset 
(significant group effects for reactivity to eye opening and 
classification performance for PS and wPLI):

• Reactivity to eye opening was not significantly mod-
ulated by group in mean or variance in the valida-

Table 2 P values from the univariate statistics (training dataset, 147 ASD and 140 NT)

P values were obtained after comparing the log-likelihoods of the three linear mixed effects models (see Materials and Methods). For power spectrum, wPLI and 
OrthPowCorr, p values were derived from cluster-based permutation tests. Cohen’s d values are given for reference after the p values, but note that they do not 
directly reflect statistical significance, since they were computed with the raw EEG parameters and do not correct for any covariates. wPLI: Weighted phase lag index. 
OrthPowCorr: Orthogonalized power correlations. P values under 0.05 are highlighted in bold

Differences in mean Differences in variance

Alpha peak frequency 0.77 (d =  − 0.11) 0.12

Reactivity to eye opening 0.042 (d =  − 0.18) 0.76

Eyes open Eyes closed Eyes open Eyes closed

Absolute alpha power 0.43 (d =  − 0.05) 0.39 (d =  − 0.20) 0.37 0.28

Power spectrum 0.72 (d =  − 0.05) 0.91 (d = 0.27) 0.53 0.92

wPLI 0.90 (d =  − 0.24) 0.98 (d =  − 0.05) 0.89 0.23

OrthPowCorr 0.59 (d =  − 0.15) 0.91 (d = 0.12) 0.39 0.85
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tion dataset (p > 0.5). Some trends similar to those 
present in the training dataset can be found in the 
validation dataset: stronger increase with age in the 
NT than in the ASD group, and reduced values in 
adults in ASD compared to NT, see Fig. 3. However, 
these effects were weak and not significant. Although 
group effects were not significant, the effect sizes 
of the case–control alterations across age groups in 
the validation dataset fell within the 95% prediction 
intervals of the effects seen in the training dataset, 
indicating that random variability within the ASD 
and NT groups alone could account for the deviation 
of values observed between training and validation 
dataset. See Fig.  3 for a full overview of effect sizes 
and prediction intervals across age groups.

• Classification ASD vs NT. The four classification 
models that produced a significant cross-validation 
classification performance in the training dataset 
(p < 0.05) were tested in the validation dataset. The 
results are shown in Table  4. Classification perfor-
mance was overall poor (accuracy 38–57%) and only 
above 50% for the elastic net model on PS (p = 0.073 

compared to randomized versions of the validation 
dataset). These performance values were in line with 
those obtained with cross-validation in the training 
dataset, as shown in Fig. 4.

In summary, all the ASD vs NT alterations found in 
the training dataset were not significant in the valida-
tion dataset (ASD group effects p > 0.05), despite showing 
similar trends for reactivity to eye opening and PS elas-
tic net model. This could be due to sampling error and 
to limited statistical power for detecting weak effects in 
the validation dataset. This is illustrated by the following 
power considerations. The statistical power to detect an 
effect size (standardized mean difference) of 0.5 in the 
validation dataset is 72%, but if this effect is for exam-
ple restricted to adults only (which could be the case for 
reactivity to eye opening training dataset), the statistical 
power is only 18%. This means that there is a high chance 
of not finding significant effects in the validation dataset 
even if the true ASD phenotype was close to that found 
in the training dataset and there was a weak interaction 

Table 3 ASD vs NT cross‑validation classification performance of PS and FC features (training dataset)

Accuracy (acc), sensitivity (sens), specificity (spec) and the p value derived from randomization tests are indicated. Classifiers with p < 0.05 are highlighted in bold. abs. 
PS refers to absolute power spectrum and was obtained in sensor space

Linear SVC Elastic net Boruta + rbf SVC

Age groups Diagnosis Measure acc sens spec p‑val acc sens spec p‑val acc sens spec p‑val

All ASD PS 0.52 0.53 0.51 0.24 0.56 0.52 0.59 0.025 0.54 0.54 0.54 0.08

All ASD OrthPowCorr 0.48 0.50 0.45 0.81 0.50 0.51 0.49 0.45 0.53 0.52 0.53 0.18

All ASD wPLI 0.47 0.50 0.44 0.79 0.57 0.53 0.61 0.009 0.53 0.50 0.55 0.19

Build separate models for adults, adolescents and children

Adults ASD PS 0.50 0.48 0.51 0.50 0.48 0.45 0.52 0.63 0.49 0.50 0.48 0.49

Adolescents ASD PS 0.49 0.47 0.51 0.60 0.50 0.50 0.51 0.50 0.48 0.46 0.50 0.56

Children ASD PS 0.53 0.51 0.55 0.29 0.47 0.51 0.44 0.68 0.43 0.45 0.42 0.84

Adults ASD OrthPowCorr 0.56 0.63 0.49 0.09 0.50 0.48 0.53 0.44 0.47 0.50 0.45 0.76

Adolescents ASD OrthPowCorr 0.45 0.51 0.39 0.78 0.50 0.49 0.52 0.40 0.53 0.60 0.46 0.29

Children ASD OrthPowCorr 0.60 0.48 0.71 0.07 0.49 0.47 0.51 0.66 0.46 0.44 0.47 0.77

Adults ASD wPLI 0.54 0.63 0.45 0.30 0.50 0.45 0.55 0.52 0.52 0.53 0.52 0.31

Adolescents ASD wPLI 0.48 0.44 0.53 0.53 0.44 0.43 0.45 0.87 0.43 0.44 0.42 0.91

Children ASD wPLI 0.64 0.54 0.73 0.02 0.60 0.62 0.59 0.013 0.47 0.36 0.56 0.73

Use a narrower ASD definition

All ASDn PS 0.53 0.39 0.61 0.45 0.55 0.55 0.56 0.17 0.56 0.48 0.61 0.15

All ASDn OrthPowCorr 0.59 0.18 0.82 0.48 0.50 0.52 0.49 0.42 0.53 0.37 0.62 0.79

All ASDn wPLI 0.55 0.22 0.73 0.34 0.48 0.53 0.46 0.44 0.55 0.42 0.62 0.26

Evaluate other variations of EEG power spectral and functional connectivity algorithms

All ASD abs. PS 0.51 0.51 0.51 0.36 0.53 0.54 0.51 0.14 0.51 0.51 0.52 0.36

All ASD PowCorr 0.47 0.48 0.46 0.81 0.46 0.45 0.47 0.99 0.49 0.49 0.48 0.68

All ASD PLV 0.47 0.49 0.45 0.82 0.51 0.50 0.53 0.63 0.52 0.52 0.52 0.28

All ASD iCOH 0.48 0.53 0.42 0.81 0.46 0.45 0.48 0.87 0.49 0.51 0.47 0.65

All ASD COH 0.46 0.47 0.44 0.91 0.47 0.45 0.49 0.88 0.48 0.49 0.47 0.74
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between age and group. More details can be found in 
Additional file 1.

Discussion
We investigated differences in resting state EEG param-
eters between autistic and neurotypical individuals with 
average to high intellectual abilities from childhood to 
adulthood in a large and well-controlled cohort (n = 212 
ASD and n = 199 NT). We analyzed various EEG met-
rics (alpha peak properties, PS, FC) that have been sug-
gested to be altered in ASD. We examined whether 
the NT and ASD groups differed in in either mean or 

variance across PS and FC features using univariate test-
ing along with cluster-based permutation tests. We then 
used machine learning to assess whether combining EEG 
features could unveil complex patterns separating ASD 
and NT participants. To test the generalizability of the 
results, alternative models using a stricter ASD defini-
tion and additional PS and FC endpoints were tested, as 
well as models trained in children, adolescents or adults-
only. These analyses were embedded within a train–test 
approach to enable the testing of various models and 
underlying hypotheses while minimizing the likeli-
hood of finding false positive results. In the training set, 

Fig. 3 Reactivity to eye opening: distribution and age trends in the training (A) and the validation dataset (B). The scatter plot of the raw values as 
a function of age is shown in the left side, along with the regression lines for each group. The distribution of reactivity values for each age group 
along with the corresponding Cohen’s d effect size is shown on the right side. Typically, d ~ 0.20 is considered small and d ~ 0.50 a medium effect 
size. PI indicates the 95% prediction interval from the training dataset to the validation dataset, and it was calculated following [38] based on the 
training dataset effects and the sample size of both datasets

Table 4 Classification performance of the multivariate models tested in the validation dataset

Accuracy (acc), sensitivity (sens), specificity (spec), S1 and the p value comparing the classification performance obtained in the original dataset with that of replicate 
datasets with randomized group labels is indicated for each model

Age groups Measure Classifier acc sens spec S1 p‑val

All PS Elastic net 0.57 0.55 0.59 0.57 0.073
All wPLI Elastic net 0.48 0.46 0.51 0.48 0.68

Children wPLI Elastic net 0.38 0.41 0.33 0.37 0.96

Children wPLI Linear SVC 0.38 0.41 0.33 0.37 0.96
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we found significant differences between ASD and NT 
for three EEG metrics: (1) interaction between age and 
diagnosis for the reactivity to eye opening with stronger 
age-related increases in the NT than the ASD cohort (2) 
significant but rather weak classification performance for 
PS and wPLI across age groups and for wPLI in children 
(accuracy of 0.56–0.64, sensitivity 0.52–0.62, specific-
ity 0.59–0.73). The effects in the validation dataset were 
non-significant, but they were in line with those found in 
the training dataset (overlapping with the training data-
set’s prediction interval or with internal cross-validation 
performance). This could be explained either by no con-
sistent effects or by consistent albeit weak effects across 
both datasets.

Age‑dependent maturation of brain rhythms
In line with previous studies of NT developmental trajec-
tories, we observed the expected developmental changes 
of EEG features, such as age-related increases in alpha 
peak frequency, relative upper alpha/beta power and 
average FC [51–54]. This can be seen as a plausibility 
check for this dataset.

Our results in the context of the literature
Directly comparing our results with previous publi-
cations is complicated by heterogeneity in the meth-
ods (e.g., specific EEG parameter extracted, FC metric, 
regions of interest to estimate pairwise connectivity) 
and the ASD subpopulation (e.g., age range, IQ, sex). A 
careful comparison with prior work is nonetheless criti-
cal to inform future work with EEG in ASD. Of par-
ticular relevance to this effort is O’Reilly et  al.’s prior 
systematic analysis of EEG/MEG FC literature [17]. They 
evaluated the support for two popular hypotheses in 
the ASD field—long-range hypoconnectivity and local 

hyperconnectivity—and concluded that there was rela-
tively strong support for long-range hypoconnectivity in 
ASD. However, heterogeneity in methods precluded a 
quantitative meta-analytic confirmation of this phenom-
enon or of which EEG parameter would best quantify 
it. Additionally, publications from the largest reviewed 
dataset [55, 56] enrolling 430 ASD and 554 NT found a 
mixture of long-range hypo- and hyperconnectivity, sug-
gesting that the long-range hyperconnectivity hypothesis 
may not fully reflect the complexity of ASD. The authors 
found an impressive 86% ASD vs. NT classification accu-
racy, but we cannot test whether their results replicate in 
the LEAP dataset because their findings are based on a 
multivariate combination of thousands of features, and 
the exact combination of features and model weights is 
not available for download. Although the original study 
excluded high functioning autism and Asperger [56], the 
authors found that their original multivariate model also 
classified NT vs. Asperger with high accuracy [55], so the 
IQ range of the cohorts do not seem to be causing the 
discrepancy between their results and ours.

FC in ASD has also been extensively studied in fMRI. 
Some reviews indicate a consistent pattern of reduced 
fMRI cortico-cortical connectivity in ASD in adolescents 
and adults, with an associated and perhaps compensa-
tory increase in short range connectivity [57–59]. In fact, 
FMRI FC alterations have also been found in the LEAP 
sample: with both hyperconnectivity in prefrontal and 
parietal cortices and hypoconnectivity in sensory-motor 
regions in ASD compared to NT [26]. This pattern of 
alterations was reproduced in two additional datasets, 
thereby confirming the robustness of the effects. While 
both fMRI- and EEG-derived FCs measure aspects of 
long-distance communication in the brain, the resulting 
FC values are different, as shown in [60]. Both modalities 
measure a different type of brain activity (synchronized 
neuronal activity for EEG, blood oxygenation for fMRI) 
and have distinct spatial and temporal resolution [61]. 
Future multimodal analyses comparing directly EEG- 
and fMRI-derived FC at the single subject level in ASD 
and NT would be best suited to understand whether the 
fMRI-derived ASD patterns have an EEG correlate.

Regarding PS, Edgar et al. published the largest study to 
date [62], with 183 ASD and 121 NT, and provided a test-
able hypothesis: an interaction between group and age in 
alpha peak frequency, with strong age-related increases 
in the NT group and no significant age effects in the ASD 
group. Within the LEAP dataset, we found age-related 
increases for both groups. Both datasets have a similar 
design (cross-sectional, similar age range, no lower IQ 
participants), so any difference in results is more likely 
to reflect other factors, such as differences in recruit-
ment, and other more nonspecific effects (e.g., site effects 

Fig. 4 Classification performance of the multivariate models in 
internal cross‑validation and external test in the validation dataset. 
For each of the four models subjected to testing in the validation 
dataset, the cross‑validation performance of each of the repeated 
random splits within the training dataset is shown as a gray dot along 
with the performance in the validation dataset (blue line). All and 
Child indicate models trained and tested in the whole cohort and 
children cohort, respectively. enet and SVC represent elastic net and 
linear support vector classifier models, respectively
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or sampling variability). However, LEAP results for the 
ASD group are not far from the prediction interval of 
Edgar et al.: They found r = 0.10 in the ASD group, which 
according to [38] results in a prediction interval for LEAP 
of [− 0.10, 0.30] and that is close to the value we recov-
ered (r = 0.33). For the NT group, our results converge 
with Edgar and colleagues: They found r = 0.57, which 
leads to a prediction interval [0.41 0.72] which in turn 
comprises the value obtained in LEAP (r = 0.44).

Lack of a significant effect is not demonstrating no effect
It is important to highlight that a lack of significant 
effects is different from demonstrating that there are 
no group differences. Although we had access to a large 
cohort and would have consequently greater sensitivity 
to detect core ASD patterns than most previous studies, 
it is possible and indeed even plausible that there are dif-
ferences between ASD and NT with smaller effect sizes 
that we may not have detected. That said, our work sug-
gests that possible differences in resting state EEG fea-
tures between ASD (IQ > 75) and NT have relatively low 
effects sizes, which may limit their utility.

We used statistical power simulations to illustrate 
and quantify the impact of sample size. Accordingly, 
our statistical power to detect a true alteration of effect 
size of 0.3 would be 62% in the training dataset, which 
means that there is a 38% chance of having missed such 
an effect. In the training dataset, we found a significant 
interaction between age and group in the reactivity to 
eye opening, with stronger age-related increases in NT 
than ASD and strongest different between both groups 
for the adult cohort (ES =  − 0.57). The ES in the train-
ing was − 0.21, which was in the 95% prediction interval 
from the training dataset, and there is therefore no evi-
dence for discrepancy between both effects. In fact, our 
statistical power to detect ASD alterations of effect size 
0.5 in adults only is 18%, indicating that the validation 
dataset is not well suited for testing such small age-group 
specific effects and the need for a bigger cohort to fully 
assess the reproducibility of these findings.

For multivariate statistics, we found weak classifica-
tion performances in the training dataset (cross-valida-
tion accuracies 0.56–0.64), and in the validation dataset 
the PS classifier had an accuracy of 0.57 along with a 
trend for statistical significance (p = 0.073). Although 
this classification pattern may reach significance in a 
bigger validation dataset, the performance in the train-
ing and validation dataset suggests that this is a rather 
weak classifier which may not have very useful clinical 
applications. Additionally, machine learning techniques 
often require a large sample size to achieve good pre-
dictive performance [63, 64]. A minimum of 10–20 
observations (our in our case, subjects) per variable has 

been suggested for reliable performance of machine 
learning methods [65, 66]. Our EEG PS and FC matri-
ces have a high dimensionality, but these variables are 
correlated and most of their variance is captured in a 
much smaller number of components (160–389 for PS 
and FC). Accordingly, future studies with at least 1500 
individuals could be therefore better suited to boost the 
performance of the classifiers. Additionally, although 
we chose three different and popular state of the art 
machine learning approaches, it is conceivable that 
other approaches would be more suited to the problem 
and to a potential true ASD pattern of alterations. We 
therefore cannot exclude that with more data and/or 
other algorithms a better ASD vs. NT separation can be 
achieved.

Heterogeneity and possible subgroups in ASD
The heterogeneity of ASD could underlie the lack of sig-
nificant ASD vs NT differences. ASD has diverse clini-
cal presentations and is in turn thought to be driven by 
diverse biological substrates [2, 67, 68]. In fact, ASD is 
common in genetic neurodevelopmental disorders that 
are characterized by specific and different, sometimes 
even “opposite” neurobiological and circuitry altera-
tions. It may well be that idiopathic ASD could be split 
into subgroups of homogeneous neurobiology that 
substantially differ [3, 68] and possibly even deviate 
from NT in opposite directions. This could mean for 
EEG features that the subgroups would change in vari-
ous directions and the mean might not differ from NT 
unless appropriate subgrouping is performed. If this 
were true, it may manifest as increased variance in the 
ASD group compared to the NT group. We investigated 
this possibility in the univariate analysis, but could not 
find any support for the idea that heterogeneous sub-
groups may drive differential variance in the ASD pop-
ulation as a whole, as compared to NT. Of note, we did 
not perform clustering in the ASD EEG PS and FC or 
attempt to find ASD subgroups, but rather focused on 
the variance of PS and FC measures in ASD compared 
to NT. Previous studies have used unsupervised statis-
tical learning to identify clusters of ASD subjects based 
on clinical, behavioral or biological measures [69–71]. 
Additionally, some studies suggest that differences in 
brain structure and function in people with ASD are 
idiosyncratic [72–75]: They are peculiar to an indi-
vidual person with ASD rather than following a group 
trend. In this view, each ASD individual could devi-
ate from NT in a different set of features, and no sub-
stantial increase in the ASD group variance would be 
expected for individual PS or FC measures.
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Other measures of brain activity and event‑related 
potentials may provide more information on ASD 
pathophysiology
Paradigms and brain activity measurements other than 
resting state EEG may be more sensitive to capture ASD-
specific brain circuitry alterations. Indeed, significant 
case–control effects have been found in previous analyses 
of resting state fMRI and task EEG in the baseline LEAP 
recordings. First, as mentioned earlier in the discussion, 
reproducible fMRI FC alterations have been found in the 
LEAP cohort [26]. Second, [76] showed an increase in 
the latency of the N170 component of the event-related 
potential to faces in ASD compared to NT in the LEAP 
cohort. The modulation of brain activity during tasks 
that challenge functions that are often altered in ASD 
may shed more light onto the ASD-specific circuitry than 
resting state activity. Interestingly, here we found trends 
for an effect in the reactivity to eye opening, which is a 
very basic sensory response measure. Other more elabo-
rated EEG paradigms tapping into elements of sensory 
or social processing linked to the ASD symptomatology 
could show stronger effects [77–79].

Limitations
We cannot draw a firm conclusion on whether the effects 
on reactivity to eye opening and PS found in the train-
ing dataset are reproducible. These effects were weak and 
the validation dataset is underpowered to confirm them. 
We have addressed this by estimating prediction intervals 
and statistical power, as detailed in Results section. Addi-
tionally, this is a cross-sectional study and longitudinal 
data would enable a better estimation of the developmen-
tal trajectories of ASD and NT subjects and would lead to 
more power to detect subtle differences. Finally, here we 
have exclusively focused on case–control comparisons, 
but it is possible that other analyses assessing clustering 
or dimensional correlations with symptom severity could 
reveal patterns of PS or FC linked to ASD-related symp-
tomatology. Moreover, in this study, we only investigated 
individuals with an IQ > 75. We opted for this approach 
because although the LEAP sample includes some indi-
viduals with an IQ below 75, they are only included in the 
adolescent and adult groups in a subset of sites, and we 
did not want to introduce confounding relations between 
variables. However, this means that our results may not 
generalize to people with ASD and intellectual disability 
or to syndromic forms of ASD. In fact, rare genetic neu-
rodevelopmental disorders characterized by intellectual 
disability and a symptomatic overlap with ASD such as 
Fragile X, Angelman and Dup15q syndromes frequently 
have characteristic resting state EEG features [80–82].

Conclusions
We found no differences between ASD and NT in rest-
ing state EEG that reproduced significantly in the valida-
tion dataset, despite trends for reactivity to eye opening 
and PS. Importantly, alpha peak parameters, PS and FC 
showed strong and expected age-related maturation from 
childhood to adulthood in ASD and NT cohorts, dem-
onstrating good data quality and validity of the analyti-
cal approaches. In sum, this could indicate, that, across 
brain rhythms, local and long-range synchronization in 
ASD (IQ > 75) may overlap largely with the NT distribu-
tion. Additionally, no evidence for increased heteroge-
neity in ASD was found, since the modeled variance in 
both groups did not differ significantly. Future work could 
focus on establishing the within-subject developmental 
trajectory in longitudinal studies, directly targeting the 
ASD heterogeneity with clustering techniques or evaluat-
ing further EEG metrics (e.g., complexity) to further test 
for specific signatures in the EEG of individuals with ASD.
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